
Supplementary Theory

In this section we prove the following propositions, which were used in the main text to
support the theory of the MinVar rooting method. Please refer to the main paper for
more details.

Proposition 1. A point p on tree T is a local MV if and only if it is a balance point.

Based on Proposition 1, we refer to local MV and balance point interchangeably.

Proposition 2. Any tree has at least one local MV.

Proposition 3. The global MV of any tree is one of its local MVs.

Proposition 4. Let p denote the global MV of T . If

ε ≤ min
w∈c(r)

(
ew

n
n−|w|h+ ew

)

then there exists a child w of r such that p ∈ e(r, w)

Proposition 5. When the global MV is on one of the adjacent edges of r, let a random
variable X indicate the distance of the global MV to the root; then, E(X) = 0.

Proposition 6. Let p be a point on an edge (u, v) of tree T with distance d(p, u) = x.
If we let p vary along edge (u, v) and consider var(p) as a function of variable x with
parameters u and v, then:

var(p) = var(x;u, v) = (1− β2)x2 +

(
α− 2ST (u)β

n

)
x+ var(u) (S1)

in which

α =
2ST (u)− 4(SI(v) + |v|ev)

n
and β = 1− 2|v|

n
(S2)

Extra notations

For two points p and p′, potentially on different edges, we let path(p, p′) denote the
directed path from p to p′. For two nodes p and u, we define Cldp(u) as the clade under
u if the tree T is rerooted at p. For ease of notation we use |p . u| to denote the size of
Cldp(u). For a point p on tree T and another point p′ on either the same edge or an

edge connected to p (if p is a node), we let
−→
pp′ denote a direction of p. It is easy to see

that any point on a tree has at least two directions, and any node that is not the root

has at least three directions. We call
−→
pp′ a dominant direction of p if and only if

1

|p . p′|
∑

i∈Cldp(p′)

di(p) >
1

n− |p . p′|
∑

i/∈Cldp(p′)

di(p) (S3)

Proofs

Proofs of ST relation and Proposition 6

On a tree T, consider a point p on the edge (u, v) with distance x from u (Fig A).
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Proof of ST relation. Recall that ST (v) is the sum of distances of all leaves from the
node v (i.e. ST (p) =

∑
i∈Cld(p)(di(p)). We need to prove that

ST (v) = ST (p(v)) + (n− 2|v|)ev. (S4)

We have

ST (p) =
∑

i∈Cld(p)

(di(u)− x) +
∑

i∈L−Cld(p)

(di(u) + x)

=
∑
i∈L

di(u) + (|L| − |p| − |p|)x

= ST (u) + (n− 2|p|)x

(S5)

Let p ≡ v, we get Eq. S4.

Proof of Proposition 6. Recall that ST (p) =
∑
i∈L di(p).

var(p) =
1

n

∑
i∈L

(di(p)−
∑
i∈L di(p)

n
)2 =

∑
i∈L d

2
i (p)

n
− (

ST (p)

n
)2 (S6)

The first term of the RHS of S6 can be expanded as follow:

Fig A. An example tree T rooted at r with a point p on edge (u, v).
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∑
i∈L d

2
i (p)

n
=

1

n

∑
i∈Cld(v)

(di(u)− x)2 +
1

n

∑
i∈L−Cld(v)

(di(u) + x)2

=
1

n

∑
i∈Cld(v)

(d2i (u)− 2di(u)x+ x2) +
1

n

∑
i∈L−Cld(v)

(d2i (u) + 2di(u)x+ x2)

=
1

n

∑
i∈L

d2i (u) +
2

n
(

∑
i∈L−Cld(v)

di(u)−
∑

i∈Cld(v)

di(u))x+ x2

=
1

n

∑
i∈L

d2i (u) + 2x

∑
i∈L di(u)− 2

∑
i∈Cld(v) di(u)

n
+ x2

=
1

n

∑
i∈L

d2i (u) + 2x
ST (u)− 2

∑
i∈Cld(v)(di(v) + ev)

n
+ x2

=
1

n

∑
i∈L

d2i (u) + 2x(
ST (u)− 2(SI(v) + |v|ev)

n
) + x2

=
1

n

∑
i∈L

d2i (u) + αx+ x2

(S7)

where the last line is simply derived from the definition:

α =
2ST (u)− 4(SI(v) + |v|ev)

n

Recall β = (1− 2|v|
n ); the second term can be expanded as follow:

(
ST (p)

n

)2

=

(
ST (u) + (n− 2|v|)x

n

)2

=

(
ST (u)

n
+ βx

)2

=

(
ST (u)

n

)2

+
2ST (u)βx

n
+ β2x2

(S8)

Substitute S7 and S8 to S6, we obtain:

var(p) =

∑
i∈L d

2
i (u)

n
+ αx+ x2 −

(
ST (u)

n

)2

− 2ST (u)βx

n
− β2x2

=

∑
i∈L d

2
i (u)

n
−
(
ST (u)

n

)2

+

(
α− 2ST (u)β

n

)
x+ (1− β2)x2

= var(u) +

(
α− 2ST (u)β

n

)
x+ (1− β2)x2

(S9)

Thus, we get Eq. S1

Useful Lemmas

Below are useful lemmas that will be used later in the proofs.
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Lemma 1. Any point on a tree either is a balance point or has at least one dominant
direction.

Proof. On tree T , consider an arbitrary point p that is adjacent to nodes v1, v2, ..., vk of
T . Let µj =

1
|p.vj |

∑
i∈Cldp(vj) di(p). If µ1 = µ2 = ... = µk, then p is a balance point of

T . Otherwise, let µm = max(µ1, µ2, ..., µk). It is easy to see that −−→pvm is a dominant
direction of p.

Lemma 2. If a point p0 is not a local MV of tree T , there exists at least one point p′

on T such that var(p′) < var(p0).

Lemma 3. Consider an edge e = (u, v) of tree T . If −→uv is a dominant direction of u
and −→vu is a dominant direction of v, then there exists a balance point on edge e.

(Lemmas 2 and 3 are proved later)

Proofs of Proposition 1 and Lemma 2

We start by some definitions and derivations that are used in proofs of both
Proposition 1 and Lemma 2. Consider a point p0 on tree T and any arbitrary point p
on the same edge as p0 or on an edge adjacent to p0 if p0 is a node. Note that when p0
is in the middle of a edge, p can be a point above or below it on the same edge, but
when p0 is a node, p can be a point on any of the three (or more) edges adjacent to p.
We divide the leaf set L of T into two disjoint groups: the leaves inside Cldp0(p) (group
1), and the remaining leaves (group 2). Let x = d(p0, p), n be the size of T , and k be
the size of group 1; the size of group 2 is therefore n− k. Let d′1, d′2, ..., d′k be the
distances of the leaves in group 1 to p0, d

′
k+1, d

′
k+2, ..., d

′
n be the distances of the leaves

in group 2 to p0, d1, d2, ..., dk be the distances of the leaves in group 1 to p, and
dk+1, dk+2, ..., dn be the distances of the leaves in group 2 to p. Also let µ′ and µ be the
averages of the leaf distances to p0 and p. Then:

di =

{
d′i − x, if 1 ≤ i ≤ k
d′i + x, if k + 1 ≤ i ≤ n

(S10)

µ′ =
1

n

(
n∑
i=1

d′i

)
var(p0) =

∑n
i=1(d

′
i)

2

n
− µ′2 (S11)

µ =
1

n

n∑
i=1

di =
1

n

(
n∑
i=1

d′i

)
+
n− 2k

n
x = µ′ +

n− 2k

n
x (S12)

var(p) =

∑n
i=1 d

2
i

n
− µ2 =

1

n

(
k∑
i=1

(d′i − x)2 +
n∑

i=k+1

(d′i + x)2

)
−
(
µ′ +

n− 2k

n
x

)2

= var(p0) +

(
1− (

n− 2k

n
)2
)
x2 +

2

n
x

(
(

n∑
i=k+1

d′i)− (

k∑
i=1

d′i)− (n− 2k)µ′

)
(S13)

var(p)− var(p0)
x

=

(
1− (

n− 2k

n
)2
)
x+

2

n

(
(

n∑
i=k+1

d′i)− (

k∑
i=1

d′i)− (n− 2k)µ′

)
(S14)
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Let x→ 0, we have

limx→0
var(p)− var(p0)

x
=

2

n

(
(

n∑
i=k+1

d′i)− (

k∑
i=1

d′i)− (n− 2k)µ′

)
(S15)

Proof of Proposition 1. We consider both directions.
a. Suppose p0 is a local MV of T then by Eq. S15

(

n∑
i=k+1

d′i)− (

k∑
i=1

d′i)− (n− 2k)µ′ = 0

=⇒ n

n∑
i=k+1

d′i − n
k∑
i=1

d′i − (n− 2k)

n∑
i=1

d′i = 0

=⇒ 1

k

k∑
i=1

d′i =
1

n− k

n∑
i=k+1

d′i

(S16)

Thus, p0 is also a balance point, which completes one direction of Proposition 1.
b. Suppose p0 is a balance point of T ; then,

1

k

k∑
i=1

d′i =
1

n− k

n∑
i=k+1

d′i = µ′ (S17)

Substituting
∑n
i=k+1 d

′
i and

∑k
i=1 d

′
i in Eq. S15 gives

limx→0
var(p)− var(p0)

x
= ((n− k)− k − (n− 2k))µ′ = 0 (S18)

which means, p0 is a local MV. This completes the proof for Proposition 1.

Proof of Lemma 2. Suppose p0 is not a local MV. By Lemma 1, there is a point p1 on
the same edge or an adjacent edge to p0 such that −−→p0p1 is a dominant direction of p0.
Letting y = d(p0, p1), replacing p with p1 in Eq. S15, we get:

limy→0
var(p1)− var(p0)

y
=

2

n2
(
n

∑
i/∈Cldp0 (p1)

di(p0)− n
∑

i∈Cldp0 (p1)

di(p0)− (n− 2|p0 . p1|)
∑
i∈L

di(p0)
)

=

4

n2
(
|p0 . p1|

∑
i/∈Cldp0 (p1)

di(p0)− (n− |p0 . p1|)
∑

i∈Cldp0 (p1)

di(p0)
)

< 0

where the inequality follows from the fact that −−→p0p1 is a dominant direction (see Eq. S3).
Because the derivative at p0 approaching from p1 is negative, there exist a point p′ in a
small local neighborhood of p0 towards p1 such that var(p′) < var(p0).

Proofs of Proposition 2 – 5 and Lemma 3

Proof of Lemma 3. For the the edge (u, v) (where u = p(v)), let
mu

1 = 1
|u.v|

∑
i∈Cldu(v) di(u) and m

u
2 = 1

n−|u.v|
∑
i/∈Cldu(v) di(u), and similarly,

mv
1 = 1

|v.u|
∑
i/∈Cldv(u) di(v) and m

v
2 = 1

n−|v.u|
∑
i∈Cldv(u) di(v).
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By definition of dominant direction (Eq. S3), mu
1 > mu

2 and mv
1 > mv

2. On the other
hand, since mu

1 = mv
2 + ev and mu

2 = mv
1 − ev, we have

0 < mu
1 −mu

2 = mv
2 −mv

1 + 2ev < 2ev. Let p be a point on edge e such that

d(p, u) = x =
mu

1−m
u
2

2 . We have:

1

|p . u|
∑

i∈Cldp(u)

di(p) = mu
1 − x and

1

n− |p . u|
∑

i/∈Cldp(u)

di(p) = mu
2 + x

1
|p.u|

∑
i∈Cldp(u) di(p)−

1
n−|p.u|

∑
i/∈Cldp(u) di(p) = mu

1 −mu
2 − 2x = 0. Thus, p is a

balance point of T .

Proof of Proposition 2. Consider a tree T rooted at rT . If rT is a local MV, then the
proof is complete. If rT is not a local MV, by Lemma 1 and Lemma 3, there exists an
edge e0 = (rT , v0) such that −−→rT v0 is a dominant direction of rT . If v0 is a balance point
of T , or −−→v0rT is a dominant direction of v0, then by Lemma 3 and Proposition 1, there
is a local MV p on e0.

Otherwise, by Lemma 1, v0 has a dominant direction −−→v0v1 associated with edge
e1 = (v0, v1). Similar to the previous case, if v1 is a balance point or −−→v1v0 is a dominant
direction of v1, then there is a balance point p on e1. Otherwise, v1 has a dominant
direction −−→v1v2 associated with edge e2 = (v1, v2).

The process can be continued until we reach an edge ek = (vk−1, vk) such that either
there is a local MV p ∈ ek or vk is a leaf of T . If vk is a leaf, then it is obvious that
−−−−→vkvk−1 is a dominant direction of vk. Recall that

−−−−→vk−1vk is a dominant direction of
vk−1. By Lemma 3 and Proposition 1, there is a local MV point p on ek.

Thus, we can always find at least one local MV in a tree T (if tree T is finite). This
completes the proof of Proposition 2.

Proof of Proposition 3. (Proof by contradiction) Suppose there exists a tree T with a
global MV p0 that is not a local MV. Let edge e = (u, v) be the edge that contains p0.
Since p0 is not a local MV, by Lemma 2, there exists a point p such that
var(p) < var(p0), which contradicts the definition of global MV.

Proof of Proposition 4. On tree T , let p be the global MV and x = d(p, r), w denote
the child of r that is on the same side as p, and di be the shorthand for di(r) (i.e. the
distance from r to leaf i of tree T ). We prove that x ≤ (1− ε)ew, and therefore,
p ∈ e(r0, w). Note that T0 and T have the same topology but are different in branch
lengths. In this proof we use ev to denote the length of the edge (p(v), v) of T0.

Follow the lemma condition

ε ≤ ew
n

n−|w|h+ ew
=⇒ n

n− |w|
εh ≤ (1− ε)ew (S19)

By Proposition 1 and 3, p is a balance point. Therefore,

1

|p|
∑

i∈Cld(p)

(di − x) =
1

|p|
∑

i∈Cld(p)

di(p) =
1

n− |p|
∑

i/∈Cld(p)

di(p) (S20)

Also,

1

n− |p|
∑

i/∈Cld(p)

di(p) ≥
1

n− |p|
( ∑
i/∈Cld(p)

(di) + (n− |w|)x− (|w| − |p|)x
)

(S21)
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From Eq. S20 and S21, we have∑
i∈Cld(p)(di − x)

|p|
≥
∑
i/∈Cld(p) di + (n− |w|)x− (|w| − |p|)x

n− |p|

=⇒
∑
i∈Cld(p) di

|p|
− x ≥

∑
i/∈Cld(p) di

n− |p|
+

(n− |w|)− |w|+ |p|
n− |p|

x

=⇒
(
1 +

n− |w| − |w|+ |p|
n− |p|

)
x =

2(n− |w|)
n− |p|

x ≤
∑
i∈Cld(p) di

|p|
−
∑
i/∈Cld(p) di

n− |p|

Recall that under our model, T0 is an ultrametric tree, so that for each leaf i,∑
v∈path(i,r) ev = h. Also, T was obtained by multiplying each edge of T0 by a random

variable with support [1− ε, 1 + ε]. Thus, (1− ε)h ≤ di =
∑
v∈path(i,r) evαv ≤ (1 + ε)h.

Therefore,

2(n− |w|)
n

x ≤ 2(n− |w|)
n− |p|

x ≤ 2εh =⇒ x ≤ n

n− |w|
εh ≤ (1− ε)ew

Hence, there exists a child w of r such that the global MV belongs to edge (r, w).

Proof of Proposition 5. Let Di be the random variable corresponding to the distribution
of di(r) and P be a random variable giving the position of the global MV root. Then,

E[Di] = E[
∑

v∈path(i,r)

evαv] =
∑

v∈path(i,r)

E[evαv]

=
∑

v∈path(i,r)

evE[αv] =
∑

v∈path(i,r)

ev = h
(S22)

By the global balance property of P , we can compute

X =
1

2

(∑
i∈Cld(P )Di

|P |
−
∑
i/∈Cld(P )Di

n− |P |

)
(S23)

and thus,

E[X] =
1

2

(∑
i∈Cld(P )E[Di]

|P |
−
∑
i/∈Cld(P )E[Di]

n− |P |

)
=

1

2
(h− h) = 0 (S24)
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Supplementary Figures and tables

Table A. Parameters used in SimPhy simulation

Arg. Description Value for D1 Value for D2
RS Number of replicates 100 20
RL Number of loci 500 50
RG Number of genes 1
SB Speciation rate Log normal(1.0e-7,1.0e-6)
SD Extinction rate Log normal(1.0e-7,SB)
ST Maximum tree length Log normal(14.41412,1) Log normal(16,1)
SL Number of taxa 30
SO Root to crown ratio R/C
SI Number of individuals per species 1
SP Global population size Uniform(10000,1000000)
SU Global substitution rate Log normal(−17.27461,0.6931472)
HH Gene by lineage specific locus tree parameter 1
HS Species specific branch rate heterogeneity rates Log normal(α,1)
HL Gene family specific rate heterogeneity rates Log normal(1.551533,0.6931472)
HG Gene by lineage specific rate heterogeneity rates Log normal(α,1)
CS Random number generator seed 9644

Root to crown ratios and Divergence from the strict clock are shown with variables α and R/C. These parameters change for
each model condition and are available in Table B.

Table B. R/C and α for different model conditions in datasets D1 and D2.

Model Condition. R/C for D1 and D2 α for D1 and D2
1 0 1.5
2 0.25 1.5
3 0.5 1.5
4 1 1.5
5 2 1.5
6 4 1.5
7 1 0.15
8 1 5
9 0 0.15
10 0 5
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Fig B. ILS levels for new simulated datasets D1 and D2. Density plots (top)
and box plots (middle and bottom) are shown for the quartet score of the true species
tree with respect to the true gene trees, as a measure of the amount of ILS. Top:
R/C=1. Middle: divergence from the clock = 1.5. Bottom: R/C=1.
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Fig C. Gene tree estimation error for datasets D1 and D2. The normalized RF
distance is shown between true gene trees and the estimated gene trees. Top: density
plots with R/C= 1; Bottom: boxplots with the divergence clock parameter set to 1.5.

Table C. Species tree estimation accuracy using rooted and unrooted gene trees

Methods compared p-value Mean MS ST error
method clock par. 1st method 2nd method

STAR True vs STAR Ideal < 10−5 0.0638 7.6313 7.6313
STAR Ideal vs STAR OG 0.5820 0.0041 11.8875 12.0844
STAR Ideal vs STAR MV 0.1892 0.0008 11.8875 13.0938
STAR OG vs STAR MV 0.4768 0.0008 12.0844 13.0938
STAR OG vs NJst 0.1619 0.0085 12.0844 13.5906

ANOVA tests were performed on the D1 (30-taxon) dataset for pairs of methods. Matching-split (MS) error is used as the
metric. The tests were performed on the subset of D1 where outgroup exists. For true gene trees, the true root is known. For
estimated gene trees, the Ideal is the rooting position that minimizes triplet error to the true gene trees. p-values are shown
for the significance of differences between the error of the two methods specified in each row, and for the differences in error
among the three levels of clock divergence parameter, respectively.
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Fig D. Normalized branch distance in true rooted gene trees for datasets
D1 and D2. The number of branches away from the true root is normalized by the
tree depth and is shown for all three methods of rooting.
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Fig E. Triplet error in true and estimated rooted gene trees for datasets D1
and D2. Absolute triplet distance is shown for all three methods of rooting plus the
ideal rooting for D1 where a brute force calculation was feasible (the rooting that
minimizes the triplet distance to the true tree).
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Fig F. SPR and Triplet error in true and estimated rooted gene trees for
the 30-taxon dataset where SPR computation is feasible. Top: SPR and
Triplet error with different R/C ratio. Middle and Bottom: SPR and Triplet error with
different levels of deviations
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Fig G. STAR and NJst error on estimated gene trees for dataset D3.
Species trees are estimated on estimated gene trees. RF distance is shown for NJst and
STAR with all three methods of rooting.
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Supplementary methods

Simulation setup

In order to simulate the gene sequences we used Indelible for datasets D1 and D2, with
sequence lengths and mutation parameters drawn randomly from distributions
described below. D1 has 30 taxa and D2 is a large dataset with 2000 or 5000 taxa. Note
that in order to match the level of gene tree error observed in D1 in the D2 dataset,
which included many more species, we set our sequence length hyperparameters such
that we had longer sequence lengths in D2.

Gene Lengths: In D1, for each gene, we sample the sequence lengths from a log
normal distribution. The parameters of the log normal (µ and σ) are drawn randomly
from gamma and uniform distributions, respectively, for each individual replicate. We
draw µ from a distribution because we want some replicates with high gene length (thus,
low gene tree error) and some with low gene length. Similarly, we draw σ from a
distribution to have replicates with high or low gene tree error variation.

Our goal was to have an average gene length of roughly 450 sites long across all
datasets, which would lead to reasonable average levels of gene tree error. The σ
parameter was drawn from a uniform random variable between (0.3,0.7) with the
average of 0.5, and this range was empirically derived by trial and error. The mean of
log-normal distribution is given by eµ+σ

2/2. For this number to be around 450, we need
µ+ σ2/2 = log(450). Replacing σ with its expected value, 0.5, we get that the expected
value of µ should be log(450)− 1/8. The gamma distribution (which we use for µ) has
an expected value of shape× scale. We empirically observed that a scale of 0.033
results in sufficient variations. So in order to have the mean 450 for log-normal, we
parameterize the gamma distribution with scale 0.033 and the shape
(log(450)− 1/8)/0.033 and draw a value X from this distribution. This procedure gives
us a left-skewed distribution with many numbers below 450. In order to make the
distribution right-skewed (and avoid many genes with very few sites), we used a simple
trick. We use Y = 2 log(450)− 1/8−X as our draw of µ. The expected value of Y
remain log(450)− 1/8, which in turn, leads to expected gene length of 450; however, the
distribution becomes right-skewed. This gives us an empirical average sequence length
of 495. The median sequence lengths is between 370 and 422 in 90% of replicates.

In D2, for each gene, we used the same strategy but with a target gene length of
700bp instead of 450bp (since larger trees need more sites to achieve similar accuracy).
The rest of the procedure remains the same. The empirical average sequence length was
766, and the median sequence lengths was between 294 and 1236 in 90% of replicates.

Base frequencies: For both datasets D1 and D2 we used a Dirichlet(36 26 28 32)
to draw base frequencies for A, C, G, and T. These values are ML estimates of the three
previously published large biological datasets, and are obtained from a previous
dataset [1].

Data availability

The code, datasets, and scripts used are all available at:
https://uym2.github.io/MinVar-Rooting/
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